Toric IOLs: Literature and Personal Results

Fabrizio I. Camesasca, MD

Paolo Vinciguerra, MD

Massimo Vitali, Orthoptist

I have no financial interests or relationships to disclose

CLINICA OCULISTICA
Istituto Clinico Humanitas
Rozzano, Milan, Italy
Chairman: Paolo Vinciguerra, MD

Summary

- Types of available toric IOLs
- Review of the literature
 - Decrease in cyl
 - Visual acuity
 - Alignement
 - Rotation
 - Induction of refractive defect
- Personal results

Toric IOLs

- Game-changer in management of astigmatism
- Stability and predictability
- Accurate for high amount of astigmatism
- Some remaining astigmatism is commonly present:
 - Nonzero astigmatic targets
 - Variability of axis
 - Power effects of surgical incisions
 - Underestimation of the corneal plane cylinder power of the IOLs by the manufacturer

Goggin M, Arch Ophthalmol 2011

- SN60TT AcrySof IQ Toric
 - 1. Biconvex toric aspheric optic
 - 2. Posterior toric lens surface
 - 3. Anterior aspheric surface
 - 4. Range: 1.50 3.00 cyl

- AcrySof IQ <u>ReSTOR</u> Toric
 - 1. Same design as AcrySof IQ ReSTOR
 +3.00
 - 2. Biconvex, apodized diffractive aspheric toric
 - 3. Posterior toric lens surface
 - 4. Anterior aspheric surface
 - 5. Range: 1.00 3.00 cyl

- Zeiss AT TorBi 709 M toric IOL
 - 1. Bitoric aspheric (prolate)
 - 2. Equally convex optic
 - 3. Hydrophilic acrylic, hydrophobic
 - surface
 - 1.UV filter
 - 2. Square edge
 - 3.11 mm diameter
 - 4. Range: +1.00 +12.00 cyl

- Zeiss AT Lisa 909 M toric IOL
- Diffractive multifocal
 - 1. Hydrophilic acrylic, hydrophobic surface
 - 1. Bitoric aspheric (prolate)
 - 2.UV filter
 - 3. Square edge
 - 4.11 mm diameter
 - 5. Range: +1.00 +4.00 cyl

- Tecnis multifocal toric 1-piece ZMT
- Biconvex, anterior toric aspheric surface
- Soft foldable acrylic, UV absorber
- Range: 1.00 4.00 D cyl

- Finevision toric
- Aspheric, diffractive trifocal
- 25% hydrophilic acrylic
- Square edge
- Incision size: 1.8 mm

- ANKORIS
- Biconvex aspher
- -0.11 mu SA
- 26% hydrophilic acrylic
- Range: 1.50 6.00 cyl

- Aspheric Bi-Flex T (677 TA)
- Aspheric hydrophilic acrylic
- Mono- or bitoric
- 25% water content

- Bausch & Lomb enVista
- Hydrophobic acrylic IOL
- Aberration free
- Glistening-free

fabrizio@camesasca.com

Cyl reduction: 2.05 D

Preop D	Postop D	Eyes	Toric IOL	Author	Year	Journa 1	
1.60 ±1.20	0.40 ±0.60	230	AcrySof	Gayton JL	2011	JRS	Simple and complex
1.70 ±0.4	0.4 ±0.4	234	AcrySof	Ahmed II	2010	JCRS	bilateral
4.6 ±2.3	1.12 ±0.9	68	MicroSil	Dick HB	2006	Klin Monbl	
4.00 ±1.10	0.55 ±0.60	19	AcrySof SN60T	Cervantes- Coste G	2012	JRS	
2.39 ±1.48	-0.49 ±0.53	284	AT Lisa 909M	Bellucci R	2013	JCRS	
1.93 ±0.90	0.30 ±0.54	30	Bi-Flex T	Bachernegg A	2013	JCRS	
2.17 ±0.41	0.73 ±0.45	30	AcrySof TT	Toto L	2013	JCRS	

Visual Acuity (2010 -2013): 0.19 logMAR

UCVA logMAR	MOS	Eyes	Toric IOL	Author	Year	Journal
0.33 ± 0.18	13.3	30	AcrySof Toric	Kim MH	2010	КЈО
0.2	6	30	AcrySof Toric SN60TT	Koshy JJ	2010	JCRS
0.13 ± 0.10	3	40	AcrySof SN60T	Mingo-Botin D	2010	JCRS
0.23 ± 0.23	4	33	Rayner T-Flex 623T	Entabi M	2011	JCRS
0.16 ±0.22	6	284	AT Lisa 909M	Bellucci R	2013	JCRS
0.11 ± 0.09	3	19	AcrySof SN60T	Cervantes-Coste G	2012	JRS
0.05 ±0.12	3	30	Bi-Flex T	Bachernegg A	2013	JCRS
0.20	6	30	AcrySof T	Toto L	2013	JCRS
0.3	3	72	AcrySof SN6At, AT Torbi 709M	Scialdone A	2013	JCRS

IOL Alignement

% > ±5°	% > ±10°	Eyes	Mos	Toric IOL	Author	Year	Journa 1	
91.1	100	161	6	AcrySof	Ahmed II	2010	JCRS	bilat
90	99	100	1	AcrySof SN60T	Chang DF	2008	JCRS	
70	90	90	1	AA4203	Chang DF	2008	JCRS	
85	99	68	3	MicroSil	Dick HB	2006	Klin M.	
	100	40	2	Tecnis T, AcrySof IQ T	Ferreira TB	2012	JRS	
37.0		26	3	Staar silicone	Chua WH	2012	JCRS	
95.8		284	6	AT Lisa 909M	Bellucci R	2013	JCRS	
61.1		36	3	AcrySof SN6AT	Scialdone A	2013	JCRS	
66.6		36	3	AT Torbi 709 M	Scialdone A	2013	JCRS	

■ IOL rotation: 4.45°

Mean rotation °	Eyes	Mos	IOL	Author	Year	Journal	
3.35 ±3.41	100	1	SN60T,	Chang DF	2008	JCRS	
5.56 ±8.49	90	1	AA4203	Chang DF	2008	JCRS	
3.15 ±2.62	20	2	Tecnis	Ferreira TB	2012	JRS	
3.25 ±2.04	20	2	AcrySof IQ T	Ferreira TB	2012	JRS	
4.23 ±4.28	24	3	AcrySof	Chua WH	2012	JCRS	
9.42 ±7.80	26	3	Staar silicon e	Chua WH	2012	JCRS	
2.12 ±3.45	30	3	Bi-Flex T	Bachernegg A	2013	JCRS	

- Induction of refractive defect
- Misalignement of toric IOL:
 - Reduction in astigmatic correction
 - Hyperopic spherical change
 - Astigmatic rotation
 - Jin H, J Cataract Refract Surg 2010
- Toric IOL rotation of less than 10° changed eye refraction of less than 0.50 D

Felipe A, J Cataract Refract Surg 2011 fabrizio@camesasca.com

Commonly used three-step inkmarker procedure: mean error in IOL placement: 5°

Visser N, J Cataract Refract Surg 2011

Personal Results

- Precise intraoperative toric IOL axis orientation:
 - May be haphazardous
 - Complicated
 - Time-consuming
 - Every degree of misalignement leads to residual astigmatism and sphere
- Limbal vessels pattern may be a precise referral structure for proper axis alignement.

Patient Evaluation

- Diagnostic exams: hunting for the axis
 - Subjective refraction
 - Corneal topography
 - Aberrometry
 - Scheimpflug tomography
 - Accurate IOL calculation

Corneal Topography + Aberrometry

- Subjective astigmatism:
 - Corneal astigmatism (A/P)
 - Lens astigmatism
- VOD 0.65 -5.00 -1.50 (175)

Purpose of the study

- Evaluate:
 - subjective and objective refraction
 - topographic astigmatism (TA)
 - before and after implantation of toric aspheric monofocal IOL
 - aligned with an empirical method based on the limbal vessels pattern.

Materials and Methods

1. IOL Aligment

- Preoperative identification of topographic axis of astigmatism
- 2. Slit-lamp identification and photograph of limbal vessels in correspondence of the most curve axis of astigmatism
- 3. Preoperative mark of 0° 180° axis
- 4. Intraoperative detection of involved limbal vessel and IOL alignement

Materials and Methods

- 1. Thirty-six eyes (20 patients, mean age 64.35 \pm 16.59)
- 2. 2.2 mm incision surgery
- 3. Toric aspheric monofocal IOL (Zeiss AT Torbi 409 MP)
- 4. Mean power: +16.33 D \pm 7.57 D, -2.75 D \pm 0.27 D cyl.
- 5. Preoperatively:
 - 1. Reference limbal vessels positioned in correspondance of the alignment axis recommended by the specific website software (Zeiss Z Calc) were photographed.
- 6. IOL axis orientation:
 - 1. Aligning the axis with reference limbal vessels
 - 2. Checking preoperative corneal topography astigmatism
- 7. Subjective refraction and TA were measured before and nine months after surgery.

 fabrizio@camesasca.com

Results

- 1. Mean preoperative subjective refraction:-2.29 D \pm 3.63 D sph with -2.19 D \pm 0.55 D cyl at 64.44° \pm 72.73°
- 2. Mean TA: -1.79 \pm 0.39 at 118.88° \pm 73.82°. Mean SIA was -0.20 D
- 3. Postop. (9 \pm 4 months), mean subj. refraction was -0.41 D \pm 0.79 D sph with -0.25 D \pm 0.44 D cyl at 93.33 $^{\circ}$ \pm 45.09 $^{\circ}$.
- 4. Mean BSCVA and UCVA were -0.06 LogMar and -0.02 LogMar, respectively.
- 5. Mean TA was -1.87 D \pm 0.40 D at 134.25° \pm 63.90° .
- 6. Mean IOL axial orientation was at 90.83 $^\circ$ \pm 38.40 $^\circ$.

0.6 -11.25 -2.50 (17)

SA@6.0 Pupil 24 C+0.32 6.17 7.47 nm NDEK

Study Conclusions

- 1. Patients receiving monofocal toric IOLs aligned through an empirical method reached optimal visual acuity.
- 2. Mean TA was not influenced by SIA
- 3. Final refraction showed highly satisfactory correction of spherical and astigmatic defect.

(van Gaalen KW, J Cataract Refract Surg 2010 * abrizio@camesasca.com

But... is it all so easy ?

- Wrong belief no. 1: corneal astigmatism is stable throughout life
 - Corneal astigmatism in healthy subjects slowly changes from with-the-rule (WR) to against-therule (AR) with time.
 - -0.30 D in 10 years

(Hayashi K, Am J Ophthalmol 2011)

- Wrong belief no. 2: power of posterior corneal surface is not important
 - 0.50 D AR in with-the-rule corneas (WR)
 - 0.30 D AR in against-the-rule corneas (AR)

Conclusions

- Toric IOLs are an effective way to correct astigmatism
- Precise alignement mandatory
- IOL calculation will improve
- Posterior corneal surface to be considered
- Several IOLs available, with different ease of positioning
- Excellent visual acuity
- Possible residual astigmatism
- Limited postoperative rotation

Thank you for your attention!

